Left Termination of the query pattern t(b) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

t1(N) :- ll2(N, Xs), select3(underscore, Xs, Xs1), ll2(M, Xs1), t1(M).
t1(00).
ll2(s1(N), .2(X, Xs)) :- ll2(N, Xs).
ll2(00, {}0).
select3(X, .2(Y, Xs), .2(Y, Ys)) :- select3(X, Xs, Ys).
select3(X, .2(X, Xs), Xs).


With regard to the inferred argument filtering the predicates were used in the following modes:
t1: (b)
ll2: (b,f) (f,b)
select3: (f,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


t_1_in_g1(N) -> if_t_1_in_1_g2(N, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))
if_t_1_in_1_g2(N, ll_2_out_ga2(N, Xs)) -> if_t_1_in_2_g3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_t_1_in_2_g3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> if_t_1_in_3_g3(N, Xs1, ll_2_in_ag2(M, Xs1))
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_t_1_in_3_g3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> if_t_1_in_4_g3(N, M, t_1_in_g1(M))
t_1_in_g1(0_0) -> t_1_out_g1(0_0)
if_t_1_in_4_g3(N, M, t_1_out_g1(M)) -> t_1_out_g1(N)

The argument filtering Pi contains the following mapping:
t_1_in_g1(x1)  =  t_1_in_g1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
if_t_1_in_1_g2(x1, x2)  =  if_t_1_in_1_g1(x2)
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
if_t_1_in_2_g3(x1, x2, x3)  =  if_t_1_in_2_g1(x3)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
if_t_1_in_3_g3(x1, x2, x3)  =  if_t_1_in_3_g1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
if_t_1_in_4_g3(x1, x2, x3)  =  if_t_1_in_4_g1(x3)
t_1_out_g1(x1)  =  t_1_out_g

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

t_1_in_g1(N) -> if_t_1_in_1_g2(N, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))
if_t_1_in_1_g2(N, ll_2_out_ga2(N, Xs)) -> if_t_1_in_2_g3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_t_1_in_2_g3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> if_t_1_in_3_g3(N, Xs1, ll_2_in_ag2(M, Xs1))
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_t_1_in_3_g3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> if_t_1_in_4_g3(N, M, t_1_in_g1(M))
t_1_in_g1(0_0) -> t_1_out_g1(0_0)
if_t_1_in_4_g3(N, M, t_1_out_g1(M)) -> t_1_out_g1(N)

The argument filtering Pi contains the following mapping:
t_1_in_g1(x1)  =  t_1_in_g1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
if_t_1_in_1_g2(x1, x2)  =  if_t_1_in_1_g1(x2)
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
if_t_1_in_2_g3(x1, x2, x3)  =  if_t_1_in_2_g1(x3)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
if_t_1_in_3_g3(x1, x2, x3)  =  if_t_1_in_3_g1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
if_t_1_in_4_g3(x1, x2, x3)  =  if_t_1_in_4_g1(x3)
t_1_out_g1(x1)  =  t_1_out_g


Pi DP problem:
The TRS P consists of the following rules:

T_1_IN_G1(N) -> IF_T_1_IN_1_G2(N, ll_2_in_ga2(N, Xs))
T_1_IN_G1(N) -> LL_2_IN_GA2(N, Xs)
LL_2_IN_GA2(s_11(N), ._22(X, Xs)) -> IF_LL_2_IN_1_GA4(N, X, Xs, ll_2_in_ga2(N, Xs))
LL_2_IN_GA2(s_11(N), ._22(X, Xs)) -> LL_2_IN_GA2(N, Xs)
IF_T_1_IN_1_G2(N, ll_2_out_ga2(N, Xs)) -> IF_T_1_IN_2_G3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
IF_T_1_IN_1_G2(N, ll_2_out_ga2(N, Xs)) -> SELECT_3_IN_AGA3(underscore, Xs, Xs1)
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Ys)) -> IF_SELECT_3_IN_1_AGA5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Ys)) -> SELECT_3_IN_AGA3(X, Xs, Ys)
IF_T_1_IN_2_G3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> IF_T_1_IN_3_G3(N, Xs1, ll_2_in_ag2(M, Xs1))
IF_T_1_IN_2_G3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> LL_2_IN_AG2(M, Xs1)
LL_2_IN_AG2(s_11(N), ._22(X, Xs)) -> IF_LL_2_IN_1_AG4(N, X, Xs, ll_2_in_ag2(N, Xs))
LL_2_IN_AG2(s_11(N), ._22(X, Xs)) -> LL_2_IN_AG2(N, Xs)
IF_T_1_IN_3_G3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> IF_T_1_IN_4_G3(N, M, t_1_in_g1(M))
IF_T_1_IN_3_G3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> T_1_IN_G1(M)

The TRS R consists of the following rules:

t_1_in_g1(N) -> if_t_1_in_1_g2(N, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))
if_t_1_in_1_g2(N, ll_2_out_ga2(N, Xs)) -> if_t_1_in_2_g3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_t_1_in_2_g3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> if_t_1_in_3_g3(N, Xs1, ll_2_in_ag2(M, Xs1))
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_t_1_in_3_g3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> if_t_1_in_4_g3(N, M, t_1_in_g1(M))
t_1_in_g1(0_0) -> t_1_out_g1(0_0)
if_t_1_in_4_g3(N, M, t_1_out_g1(M)) -> t_1_out_g1(N)

The argument filtering Pi contains the following mapping:
t_1_in_g1(x1)  =  t_1_in_g1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
if_t_1_in_1_g2(x1, x2)  =  if_t_1_in_1_g1(x2)
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
if_t_1_in_2_g3(x1, x2, x3)  =  if_t_1_in_2_g1(x3)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
if_t_1_in_3_g3(x1, x2, x3)  =  if_t_1_in_3_g1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
if_t_1_in_4_g3(x1, x2, x3)  =  if_t_1_in_4_g1(x3)
t_1_out_g1(x1)  =  t_1_out_g
IF_LL_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_LL_2_IN_1_AG1(x4)
IF_T_1_IN_1_G2(x1, x2)  =  IF_T_1_IN_1_G1(x2)
LL_2_IN_AG2(x1, x2)  =  LL_2_IN_AG1(x2)
IF_LL_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_LL_2_IN_1_GA1(x4)
IF_T_1_IN_4_G3(x1, x2, x3)  =  IF_T_1_IN_4_G1(x3)
IF_T_1_IN_3_G3(x1, x2, x3)  =  IF_T_1_IN_3_G1(x3)
IF_T_1_IN_2_G3(x1, x2, x3)  =  IF_T_1_IN_2_G1(x3)
SELECT_3_IN_AGA3(x1, x2, x3)  =  SELECT_3_IN_AGA1(x2)
IF_SELECT_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_SELECT_3_IN_1_AGA1(x5)
T_1_IN_G1(x1)  =  T_1_IN_G1(x1)
LL_2_IN_GA2(x1, x2)  =  LL_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

T_1_IN_G1(N) -> IF_T_1_IN_1_G2(N, ll_2_in_ga2(N, Xs))
T_1_IN_G1(N) -> LL_2_IN_GA2(N, Xs)
LL_2_IN_GA2(s_11(N), ._22(X, Xs)) -> IF_LL_2_IN_1_GA4(N, X, Xs, ll_2_in_ga2(N, Xs))
LL_2_IN_GA2(s_11(N), ._22(X, Xs)) -> LL_2_IN_GA2(N, Xs)
IF_T_1_IN_1_G2(N, ll_2_out_ga2(N, Xs)) -> IF_T_1_IN_2_G3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
IF_T_1_IN_1_G2(N, ll_2_out_ga2(N, Xs)) -> SELECT_3_IN_AGA3(underscore, Xs, Xs1)
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Ys)) -> IF_SELECT_3_IN_1_AGA5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Ys)) -> SELECT_3_IN_AGA3(X, Xs, Ys)
IF_T_1_IN_2_G3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> IF_T_1_IN_3_G3(N, Xs1, ll_2_in_ag2(M, Xs1))
IF_T_1_IN_2_G3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> LL_2_IN_AG2(M, Xs1)
LL_2_IN_AG2(s_11(N), ._22(X, Xs)) -> IF_LL_2_IN_1_AG4(N, X, Xs, ll_2_in_ag2(N, Xs))
LL_2_IN_AG2(s_11(N), ._22(X, Xs)) -> LL_2_IN_AG2(N, Xs)
IF_T_1_IN_3_G3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> IF_T_1_IN_4_G3(N, M, t_1_in_g1(M))
IF_T_1_IN_3_G3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> T_1_IN_G1(M)

The TRS R consists of the following rules:

t_1_in_g1(N) -> if_t_1_in_1_g2(N, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))
if_t_1_in_1_g2(N, ll_2_out_ga2(N, Xs)) -> if_t_1_in_2_g3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_t_1_in_2_g3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> if_t_1_in_3_g3(N, Xs1, ll_2_in_ag2(M, Xs1))
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_t_1_in_3_g3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> if_t_1_in_4_g3(N, M, t_1_in_g1(M))
t_1_in_g1(0_0) -> t_1_out_g1(0_0)
if_t_1_in_4_g3(N, M, t_1_out_g1(M)) -> t_1_out_g1(N)

The argument filtering Pi contains the following mapping:
t_1_in_g1(x1)  =  t_1_in_g1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
if_t_1_in_1_g2(x1, x2)  =  if_t_1_in_1_g1(x2)
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
if_t_1_in_2_g3(x1, x2, x3)  =  if_t_1_in_2_g1(x3)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
if_t_1_in_3_g3(x1, x2, x3)  =  if_t_1_in_3_g1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
if_t_1_in_4_g3(x1, x2, x3)  =  if_t_1_in_4_g1(x3)
t_1_out_g1(x1)  =  t_1_out_g
IF_LL_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_LL_2_IN_1_AG1(x4)
IF_T_1_IN_1_G2(x1, x2)  =  IF_T_1_IN_1_G1(x2)
LL_2_IN_AG2(x1, x2)  =  LL_2_IN_AG1(x2)
IF_LL_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_LL_2_IN_1_GA1(x4)
IF_T_1_IN_4_G3(x1, x2, x3)  =  IF_T_1_IN_4_G1(x3)
IF_T_1_IN_3_G3(x1, x2, x3)  =  IF_T_1_IN_3_G1(x3)
IF_T_1_IN_2_G3(x1, x2, x3)  =  IF_T_1_IN_2_G1(x3)
SELECT_3_IN_AGA3(x1, x2, x3)  =  SELECT_3_IN_AGA1(x2)
IF_SELECT_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_SELECT_3_IN_1_AGA1(x5)
T_1_IN_G1(x1)  =  T_1_IN_G1(x1)
LL_2_IN_GA2(x1, x2)  =  LL_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 4 SCCs with 7 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LL_2_IN_AG2(s_11(N), ._22(X, Xs)) -> LL_2_IN_AG2(N, Xs)

The TRS R consists of the following rules:

t_1_in_g1(N) -> if_t_1_in_1_g2(N, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))
if_t_1_in_1_g2(N, ll_2_out_ga2(N, Xs)) -> if_t_1_in_2_g3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_t_1_in_2_g3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> if_t_1_in_3_g3(N, Xs1, ll_2_in_ag2(M, Xs1))
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_t_1_in_3_g3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> if_t_1_in_4_g3(N, M, t_1_in_g1(M))
t_1_in_g1(0_0) -> t_1_out_g1(0_0)
if_t_1_in_4_g3(N, M, t_1_out_g1(M)) -> t_1_out_g1(N)

The argument filtering Pi contains the following mapping:
t_1_in_g1(x1)  =  t_1_in_g1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
if_t_1_in_1_g2(x1, x2)  =  if_t_1_in_1_g1(x2)
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
if_t_1_in_2_g3(x1, x2, x3)  =  if_t_1_in_2_g1(x3)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
if_t_1_in_3_g3(x1, x2, x3)  =  if_t_1_in_3_g1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
if_t_1_in_4_g3(x1, x2, x3)  =  if_t_1_in_4_g1(x3)
t_1_out_g1(x1)  =  t_1_out_g
LL_2_IN_AG2(x1, x2)  =  LL_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LL_2_IN_AG2(s_11(N), ._22(X, Xs)) -> LL_2_IN_AG2(N, Xs)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
LL_2_IN_AG2(x1, x2)  =  LL_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

LL_2_IN_AG1(._21(Xs)) -> LL_2_IN_AG1(Xs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LL_2_IN_AG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Ys)) -> SELECT_3_IN_AGA3(X, Xs, Ys)

The TRS R consists of the following rules:

t_1_in_g1(N) -> if_t_1_in_1_g2(N, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))
if_t_1_in_1_g2(N, ll_2_out_ga2(N, Xs)) -> if_t_1_in_2_g3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_t_1_in_2_g3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> if_t_1_in_3_g3(N, Xs1, ll_2_in_ag2(M, Xs1))
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_t_1_in_3_g3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> if_t_1_in_4_g3(N, M, t_1_in_g1(M))
t_1_in_g1(0_0) -> t_1_out_g1(0_0)
if_t_1_in_4_g3(N, M, t_1_out_g1(M)) -> t_1_out_g1(N)

The argument filtering Pi contains the following mapping:
t_1_in_g1(x1)  =  t_1_in_g1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
if_t_1_in_1_g2(x1, x2)  =  if_t_1_in_1_g1(x2)
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
if_t_1_in_2_g3(x1, x2, x3)  =  if_t_1_in_2_g1(x3)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
if_t_1_in_3_g3(x1, x2, x3)  =  if_t_1_in_3_g1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
if_t_1_in_4_g3(x1, x2, x3)  =  if_t_1_in_4_g1(x3)
t_1_out_g1(x1)  =  t_1_out_g
SELECT_3_IN_AGA3(x1, x2, x3)  =  SELECT_3_IN_AGA1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Ys)) -> SELECT_3_IN_AGA3(X, Xs, Ys)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
SELECT_3_IN_AGA3(x1, x2, x3)  =  SELECT_3_IN_AGA1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

SELECT_3_IN_AGA1(._21(Xs)) -> SELECT_3_IN_AGA1(Xs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {SELECT_3_IN_AGA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LL_2_IN_GA2(s_11(N), ._22(X, Xs)) -> LL_2_IN_GA2(N, Xs)

The TRS R consists of the following rules:

t_1_in_g1(N) -> if_t_1_in_1_g2(N, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))
if_t_1_in_1_g2(N, ll_2_out_ga2(N, Xs)) -> if_t_1_in_2_g3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_t_1_in_2_g3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> if_t_1_in_3_g3(N, Xs1, ll_2_in_ag2(M, Xs1))
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_t_1_in_3_g3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> if_t_1_in_4_g3(N, M, t_1_in_g1(M))
t_1_in_g1(0_0) -> t_1_out_g1(0_0)
if_t_1_in_4_g3(N, M, t_1_out_g1(M)) -> t_1_out_g1(N)

The argument filtering Pi contains the following mapping:
t_1_in_g1(x1)  =  t_1_in_g1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
if_t_1_in_1_g2(x1, x2)  =  if_t_1_in_1_g1(x2)
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
if_t_1_in_2_g3(x1, x2, x3)  =  if_t_1_in_2_g1(x3)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
if_t_1_in_3_g3(x1, x2, x3)  =  if_t_1_in_3_g1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
if_t_1_in_4_g3(x1, x2, x3)  =  if_t_1_in_4_g1(x3)
t_1_out_g1(x1)  =  t_1_out_g
LL_2_IN_GA2(x1, x2)  =  LL_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LL_2_IN_GA2(s_11(N), ._22(X, Xs)) -> LL_2_IN_GA2(N, Xs)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
LL_2_IN_GA2(x1, x2)  =  LL_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

LL_2_IN_GA1(s_11(N)) -> LL_2_IN_GA1(N)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LL_2_IN_GA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

IF_T_1_IN_1_G2(N, ll_2_out_ga2(N, Xs)) -> IF_T_1_IN_2_G3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
IF_T_1_IN_2_G3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> IF_T_1_IN_3_G3(N, Xs1, ll_2_in_ag2(M, Xs1))
IF_T_1_IN_3_G3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> T_1_IN_G1(M)
T_1_IN_G1(N) -> IF_T_1_IN_1_G2(N, ll_2_in_ga2(N, Xs))

The TRS R consists of the following rules:

t_1_in_g1(N) -> if_t_1_in_1_g2(N, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))
if_t_1_in_1_g2(N, ll_2_out_ga2(N, Xs)) -> if_t_1_in_2_g3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_t_1_in_2_g3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> if_t_1_in_3_g3(N, Xs1, ll_2_in_ag2(M, Xs1))
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_t_1_in_3_g3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> if_t_1_in_4_g3(N, M, t_1_in_g1(M))
t_1_in_g1(0_0) -> t_1_out_g1(0_0)
if_t_1_in_4_g3(N, M, t_1_out_g1(M)) -> t_1_out_g1(N)

The argument filtering Pi contains the following mapping:
t_1_in_g1(x1)  =  t_1_in_g1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
if_t_1_in_1_g2(x1, x2)  =  if_t_1_in_1_g1(x2)
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
if_t_1_in_2_g3(x1, x2, x3)  =  if_t_1_in_2_g1(x3)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
if_t_1_in_3_g3(x1, x2, x3)  =  if_t_1_in_3_g1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
if_t_1_in_4_g3(x1, x2, x3)  =  if_t_1_in_4_g1(x3)
t_1_out_g1(x1)  =  t_1_out_g
IF_T_1_IN_1_G2(x1, x2)  =  IF_T_1_IN_1_G1(x2)
IF_T_1_IN_3_G3(x1, x2, x3)  =  IF_T_1_IN_3_G1(x3)
IF_T_1_IN_2_G3(x1, x2, x3)  =  IF_T_1_IN_2_G1(x3)
T_1_IN_G1(x1)  =  T_1_IN_G1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_T_1_IN_1_G2(N, ll_2_out_ga2(N, Xs)) -> IF_T_1_IN_2_G3(N, Xs, select_3_in_aga3(underscore, Xs, Xs1))
IF_T_1_IN_2_G3(N, Xs, select_3_out_aga3(underscore, Xs, Xs1)) -> IF_T_1_IN_3_G3(N, Xs1, ll_2_in_ag2(M, Xs1))
IF_T_1_IN_3_G3(N, Xs1, ll_2_out_ag2(M, Xs1)) -> T_1_IN_G1(M)
T_1_IN_G1(N) -> IF_T_1_IN_1_G2(N, ll_2_in_ga2(N, Xs))

The TRS R consists of the following rules:

select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Ys)) -> if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_in_aga3(X, Xs, Ys))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
ll_2_in_ag2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ag4(N, X, Xs, ll_2_in_ag2(N, Xs))
ll_2_in_ag2(0_0, []_0) -> ll_2_out_ag2(0_0, []_0)
ll_2_in_ga2(s_11(N), ._22(X, Xs)) -> if_ll_2_in_1_ga4(N, X, Xs, ll_2_in_ga2(N, Xs))
ll_2_in_ga2(0_0, []_0) -> ll_2_out_ga2(0_0, []_0)
if_select_3_in_1_aga5(X, Y, Xs, Ys, select_3_out_aga3(X, Xs, Ys)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Ys))
if_ll_2_in_1_ag4(N, X, Xs, ll_2_out_ag2(N, Xs)) -> ll_2_out_ag2(s_11(N), ._22(X, Xs))
if_ll_2_in_1_ga4(N, X, Xs, ll_2_out_ga2(N, Xs)) -> ll_2_out_ga2(s_11(N), ._22(X, Xs))

The argument filtering Pi contains the following mapping:
0_0  =  0_0
s_11(x1)  =  s_11(x1)
._22(x1, x2)  =  ._21(x2)
[]_0  =  []_0
ll_2_in_ga2(x1, x2)  =  ll_2_in_ga1(x1)
if_ll_2_in_1_ga4(x1, x2, x3, x4)  =  if_ll_2_in_1_ga1(x4)
ll_2_out_ga2(x1, x2)  =  ll_2_out_ga1(x2)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga1(x5)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga1(x3)
ll_2_in_ag2(x1, x2)  =  ll_2_in_ag1(x2)
if_ll_2_in_1_ag4(x1, x2, x3, x4)  =  if_ll_2_in_1_ag1(x4)
ll_2_out_ag2(x1, x2)  =  ll_2_out_ag1(x1)
IF_T_1_IN_1_G2(x1, x2)  =  IF_T_1_IN_1_G1(x2)
IF_T_1_IN_3_G3(x1, x2, x3)  =  IF_T_1_IN_3_G1(x3)
IF_T_1_IN_2_G3(x1, x2, x3)  =  IF_T_1_IN_2_G1(x3)
T_1_IN_G1(x1)  =  T_1_IN_G1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPPoloProof

Q DP problem:
The TRS P consists of the following rules:

IF_T_1_IN_1_G1(ll_2_out_ga1(Xs)) -> IF_T_1_IN_2_G1(select_3_in_aga1(Xs))
IF_T_1_IN_2_G1(select_3_out_aga1(Xs1)) -> IF_T_1_IN_3_G1(ll_2_in_ag1(Xs1))
IF_T_1_IN_3_G1(ll_2_out_ag1(M)) -> T_1_IN_G1(M)
T_1_IN_G1(N) -> IF_T_1_IN_1_G1(ll_2_in_ga1(N))

The TRS R consists of the following rules:

select_3_in_aga1(._21(Xs)) -> if_select_3_in_1_aga1(select_3_in_aga1(Xs))
select_3_in_aga1(._21(Xs)) -> select_3_out_aga1(Xs)
ll_2_in_ag1(._21(Xs)) -> if_ll_2_in_1_ag1(ll_2_in_ag1(Xs))
ll_2_in_ag1([]_0) -> ll_2_out_ag1(0_0)
ll_2_in_ga1(s_11(N)) -> if_ll_2_in_1_ga1(ll_2_in_ga1(N))
ll_2_in_ga1(0_0) -> ll_2_out_ga1([]_0)
if_select_3_in_1_aga1(select_3_out_aga1(Ys)) -> select_3_out_aga1(._21(Ys))
if_ll_2_in_1_ag1(ll_2_out_ag1(N)) -> ll_2_out_ag1(s_11(N))
if_ll_2_in_1_ga1(ll_2_out_ga1(Xs)) -> ll_2_out_ga1(._21(Xs))

The set Q consists of the following terms:

select_3_in_aga1(x0)
ll_2_in_ag1(x0)
ll_2_in_ga1(x0)
if_select_3_in_1_aga1(x0)
if_ll_2_in_1_ag1(x0)
if_ll_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_T_1_IN_2_G1, IF_T_1_IN_1_G1, IF_T_1_IN_3_G1, T_1_IN_G1}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

IF_T_1_IN_2_G1(select_3_out_aga1(Xs1)) -> IF_T_1_IN_3_G1(ll_2_in_ag1(Xs1))
The remaining Dependency Pairs were at least non-strictly be oriented.

IF_T_1_IN_1_G1(ll_2_out_ga1(Xs)) -> IF_T_1_IN_2_G1(select_3_in_aga1(Xs))
IF_T_1_IN_3_G1(ll_2_out_ag1(M)) -> T_1_IN_G1(M)
T_1_IN_G1(N) -> IF_T_1_IN_1_G1(ll_2_in_ga1(N))
With the implicit AFS we had to orient the following set of usable rules non-strictly.

if_ll_2_in_1_ga1(ll_2_out_ga1(Xs)) -> ll_2_out_ga1(._21(Xs))
if_select_3_in_1_aga1(select_3_out_aga1(Ys)) -> select_3_out_aga1(._21(Ys))
ll_2_in_ag1(._21(Xs)) -> if_ll_2_in_1_ag1(ll_2_in_ag1(Xs))
ll_2_in_ga1(s_11(N)) -> if_ll_2_in_1_ga1(ll_2_in_ga1(N))
ll_2_in_ga1(0_0) -> ll_2_out_ga1([]_0)
if_ll_2_in_1_ag1(ll_2_out_ag1(N)) -> ll_2_out_ag1(s_11(N))
select_3_in_aga1(._21(Xs)) -> select_3_out_aga1(Xs)
select_3_in_aga1(._21(Xs)) -> if_select_3_in_1_aga1(select_3_in_aga1(Xs))
ll_2_in_ag1([]_0) -> ll_2_out_ag1(0_0)
Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(if_ll_2_in_1_ga1(x1)) = 1 + x1   
POL(if_select_3_in_1_aga1(x1)) = 1 + x1   
POL([]_0) = 0   
POL(IF_T_1_IN_1_G1(x1)) = x1   
POL(ll_2_in_ag1(x1)) = x1   
POL(if_ll_2_in_1_ag1(x1)) = 1 + x1   
POL(ll_2_in_ga1(x1)) = x1   
POL(select_3_out_aga1(x1)) = 1 + x1   
POL(ll_2_out_ga1(x1)) = x1   
POL(IF_T_1_IN_3_G1(x1)) = x1   
POL(ll_2_out_ag1(x1)) = x1   
POL(T_1_IN_G1(x1)) = x1   
POL(IF_T_1_IN_2_G1(x1)) = x1   
POL(s_11(x1)) = 1 + x1   
POL(select_3_in_aga1(x1)) = x1   
POL(._21(x1)) = 1 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF_T_1_IN_1_G1(ll_2_out_ga1(Xs)) -> IF_T_1_IN_2_G1(select_3_in_aga1(Xs))
IF_T_1_IN_3_G1(ll_2_out_ag1(M)) -> T_1_IN_G1(M)
T_1_IN_G1(N) -> IF_T_1_IN_1_G1(ll_2_in_ga1(N))

The TRS R consists of the following rules:

select_3_in_aga1(._21(Xs)) -> if_select_3_in_1_aga1(select_3_in_aga1(Xs))
select_3_in_aga1(._21(Xs)) -> select_3_out_aga1(Xs)
ll_2_in_ag1(._21(Xs)) -> if_ll_2_in_1_ag1(ll_2_in_ag1(Xs))
ll_2_in_ag1([]_0) -> ll_2_out_ag1(0_0)
ll_2_in_ga1(s_11(N)) -> if_ll_2_in_1_ga1(ll_2_in_ga1(N))
ll_2_in_ga1(0_0) -> ll_2_out_ga1([]_0)
if_select_3_in_1_aga1(select_3_out_aga1(Ys)) -> select_3_out_aga1(._21(Ys))
if_ll_2_in_1_ag1(ll_2_out_ag1(N)) -> ll_2_out_ag1(s_11(N))
if_ll_2_in_1_ga1(ll_2_out_ga1(Xs)) -> ll_2_out_ga1(._21(Xs))

The set Q consists of the following terms:

select_3_in_aga1(x0)
ll_2_in_ag1(x0)
ll_2_in_ga1(x0)
if_select_3_in_1_aga1(x0)
if_ll_2_in_1_ag1(x0)
if_ll_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_T_1_IN_2_G1, IF_T_1_IN_1_G1, T_1_IN_G1, IF_T_1_IN_3_G1}.
The approximation of the Dependency Graph contains 0 SCCs with 3 less nodes.